CAPACITÂNCIAS E CAPACITORES

No estudo de tensão alternada, além da resistência devida aos resistores, aparecem também a capacitância e os capacitores. A capacitância está presente em todos os circuitos reais.

Para se falar em capacitância, deve-se relembrar alguns princípios de campo elétrico.

Neste capítulo, estudaremos a capacitância e os capacitores, avaliando as tensões e correntes alternadas que circulam pelos capacitores. No capítulo 10, estudaremos os circuitos de tensão alternada com resistências, indutâncias e capacitâncias.

9.1 CAMPO ELÉTRICO

Quando se aplica uma tensão contínua entre duas placas paralelas, como mostrado na Fig. 9.1, as placas irão se polarizar.

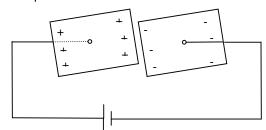


Fig. 9.1 – Placas paralelas com uma tensão contínua aplicada

A placa da esquerda ficará com uma carga positiva, devido ao pólo positivo da fonte estar conectado na mesma, e a placa da direita ficará com uma carga negativa devido ao pólo negativo da fonte estar conectado nesta. Entre as duas placas aparecerá um campo elétrico, como mostrado no capítulo 4.

9.2 CAPACITÂNCIA

Na Fig. 9.1, uma quantidade de energia elétrica da fonte será transferida para o campo elétrico. A quantidade de energia é dada por:

$$E = \frac{1}{2}CV^2, (9.1)$$

onde *E* é a quantidade de energia em joules, C é uma constante denominada de *capacitância*, com unidade em farads [F], e V a tensão aplicada entre as placas, em volts.

Pode-se notar nessa equação que se C é grande, então a quantidade de energia armazenada no campo elétrico também será grande. Se C é pequeno, a quantidade de energia será pequena. Então, poderíamos dizer que capacitância é uma medida da capacidade de se armazenar energia no campo elétrico. Ela pode ser calculada por:

$$C = \frac{Q}{V} \tag{9.2}$$

ou

$$C = \varepsilon \frac{A}{d},\tag{9.3}$$

onde a capacitância C continua sendo dada em farads [F]; Q é a carga em cada placa (dada em coulombs); V continua sendo a tensão aplicada entre as duas placas (em volts); ϵ é uma constante de proporcionalidade, denominada de *permissividade* do meio entre as duas placas; A é a área de cada placa (dada em m^2) e d é a distância entre as placas (dada em metros). Se substituirmos o ar entre as placas por algum material elétrico isolante (também denominado de *meio dielétrico*), como mostrado na Fig. 9.2, conseqüentemente, pelas equações 9.3 e 9.1, a capacitância irá se alterar e também a energia armazenada.

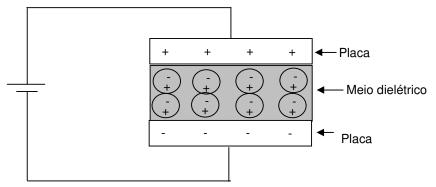


Fig. 9.2 - Meio dielétrico entre duas placas paralelas

A permissividade de um meio dielétrico tem como unidade farads por metro [F/m]. O vácuo tem uma permissividade $\epsilon_{o}=8,85 \times 10^{-12}$ F/m. A permissividade de outros meios sempre se refere à permissividade do vácuo por um fator denominado de *permissividade relativa*, cujo símbolo é ϵ_{r} . A permissividade do meio é dada por $\epsilon=\epsilon_{r}$ ϵ_{o} . A tabela I apresenta a permissividade relativa de alguns materiais.

Tab. I - Permeabilidade relativa de alguns materiais

Substância	ϵ_{r}
Ar	1,0006
Óleo mineral	2,2-2,3
Papel parafinado	2,5
Mica	4-8
Vidro	5-8
Porcelana	5-6

9.3 CAPACITOR

O capacitor é um componente designado especificamente para ter capacitância. Ele pode ser constituído por duas placas paralelas separadas por um meio dielétrico. Os símbolos mais usados para representá-lo são:

O 2º. símbolo será usado neste e nos próximos capítulos.

9.4 1a, e 2a, LEIS DE KIRCHHOFF

Seja o circuito da Figura 9.3a. Em um dado instante, tem-se uma elevação de tensão na fonte de tensão V_f e uma queda de tensão V_L no capacitor de capacitância C. Da mesma forma, no circuito da Figura 9.3b, tem-se uma elevação de tensão na fonte de tensão V_f e quedas de tensão V_{C1} , V_{C2} e V_{C3} nos indutores de indutâncias C_1 , C_2 e C_3 .

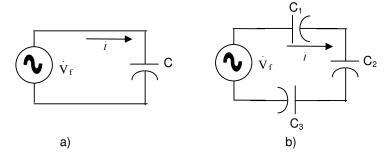


Figura 9.3 - circuitos simples com indutância

Em um circuito com capacitores, as leis de Kirchhoff continuam valendo. Assim, para a 1ª. lei de Kirchhoff.

$$\sum_{i=1}^{i=n} V_i = \sum_{j=1}^{j=m} V_j , \qquad (9.5)$$

sendo n o número de elevações de potencial dentro de um caminho fechado de um circuito e m o número de quedas de tensão. A 2ª. lei de Kirchhoff é

$$\sum_{i=1}^{i=n} I_i = \sum_{j=1}^{j=m} I_j , \qquad (9.6)$$

sendo n o número de correntes entrando no nó e m o número de correntes saindo do mesmo.

9.5 CAPACITÂNCIAS EQUIVALENTES

9.5.1 CIRCUITO SÉRIE

Seja o circuito da Figura 9.4a, onde se tem uma fonte de tensão alternada alimentando três capacitores ligados em série. Pela equação 9.5, tem-se

$$\dot{V}_{f} = \dot{V}_{L1} + \dot{V}_{L2} + \dot{V}_{L3}$$
.

Como

$$v_{C1} = \frac{Q}{C_1} \,, \ v_{C2} = \frac{Q}{C_2} \,, v_{C3} = \frac{Q}{C_3} \ \mbox{e} \ v_{Ceq} = \frac{Q}{Ceq} \,, \label{eq:vc1}$$

então

$$\frac{Q}{Ceq} = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3}$$

ou

$$\frac{1}{Ceq} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}.$$

Assim, o inverso da capacitância equivalente de um conjunto de capacitores ligados em série é igual a soma dos inversos das capacitâncias dos capacitores. Este equivalente é igual ao equivalente de resistores em paralelo.

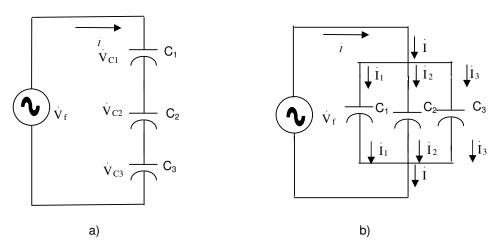


Figura 9.4 – Capacitores ligados em série em paralelo.

9.5.2 CIRCUITO PARALELO

No circuito da Figura 9.4b, tem uma fonte de tensão alternada alimentando três capacitores ligados em paralelo. A carga total nos três capacitores é igual a

$$Q_{Total} = Q_1 + Q_2 + Q_3 \, . \,$$
 Mas
$$Q_1 = C_1 v_f \, , \, Q_2 = C_2 v_f \, , Q_3 = C_3 v_f \, \in \, Q_{total} = C_{eq} v_f \, ,$$
 então
$$C_{eq} v_f = C_1 v_f + C_2 v_f + C_3 v_f \, .$$
 ou
$$C_{eq} v_f = \left(C_1 + C_2 + C_3\right) v_f \, .$$
 ou
$$C_{eq} = C_1 + C_2 + C_3$$

Assim, a capacitância equivalente de um conjunto de capacitores ligados em paralelo é igual a soma das capacitâncias desses capacitores. Este equivalente é igual ao equivalente de resistores em paralelo.

9.6 LEI DE OHM

Quando se aplica uma tensão alternada em um capacitor, que tem uma capacitância C, a equação (7.7) continua valendo. Essa equação \acute{e} :

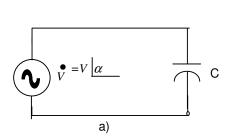
$$\dot{\mathbf{I}} = \frac{\dot{V}}{\dot{Z}},\tag{7.7}$$

onde I e V são a corrente e a tensão com anotações fasoriais, e Z é um número complexo que representa a impedância. Este Z tem, na parte imaginária, o valor negativo da reatância, que é calculada como:

$$X_C = \frac{1}{wC},\tag{9.4}$$

onde ω = $2\pi f$ e X_C é a reatância capacitiva dada em ohm $[\Omega]$. No circuito da Fig. 9.3a, tem-se R = 0,

 $X_C = 1/\omega C = 1/2\pi f$ C, $Z = R - jX_C = 0 - jX_C = X_C \left\lfloor -90^{\circ} \right\rfloor$. Então, a corrente no capacitor será: $I = V/Z = V \left\lfloor \alpha \right\rfloor / X_L \left\lfloor -90^{\circ} \right\rfloor = (V/X_C) \left\lfloor \alpha + 90^{\circ} \right\rfloor$. Se $\alpha = 0^{\circ}$, as ondas de tensão e corrente no capacitor têm as formas apresentadas na Fig. 9.3b. Pode-se notar que para $t = 0^{\circ}$, a onda de tensão tem um valor zero e a onda de corrente um valor máximo positivo. Quando $t = 90^{\circ}$, a onda de tensão tem um valor máximo positivo e a onda de corrente um valor zero. Então a onda de corrente está adiantada (defasada) de $t = 90^{\circ}$ da onda de tensão.



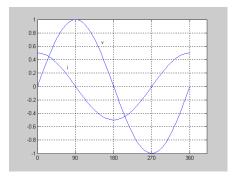


Fig. 9.3 - Tensão e corrente em um capacitor

9.7 CÁLCULO DE CORRENTE E QUEDAS DE TENSÃO EM CIRCUITOS SÉRIE-PARALELOS

O cálculo de corrente e quedas de tensão em circuitos série, paralelo ou série-paralelo de tensão alternada com capacitores é igual ao cálculo de corrente e quedas de tensão dos circuitos em tensão alternada com resistores, transformando as capacitâncias em reatâncias e as considerando-as com valor negativo na parte imaginária das impedâncias.

A impedância equivalente de conjuntos série ou paralelo de impedâncias é feito da mesma forma que se faz com resistência, porém usando números complexos.

Para duas impedâncias em série tem-se $\dot{Z}_{eq} = \dot{Z}_1 + \dot{Z}_2$. Para duas impedâncias em paralelo tem-

se
$$Z_{eq} = \frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

9.8 POTÊNCIA EM CAPACITORES

A potência em capacitores ou cargas capacitivas puras pode ser determinada das formas seguintes:

- usando a corrente na forma fasorial

$$Q = -X_C I I^*$$
 (9.7)

- usando o módulo da corrente

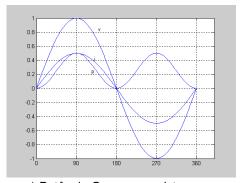
$$Q = -X_C I^2. (9.8)$$

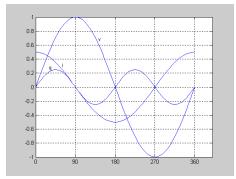
Essas equações são iguais as equações de cálculo de potência em resistências, com as

modificações de Q no lugar de P e X_C no lugar de R.

A potência Q em um capacitor é denominada de potência reativa e tem como unidade o VAr.

Instantaneamente, enquanto que em um circuito puramente resistivo, a potência P (denominada de *potência dissipada*, *potência joulica*, *potência ativa*, e tem como unidade o W) sai do circuito através de uma transformação de energia elétrica em energia térmica, luminosa ou mecânica (ver Fig. 9.4a.), a potência reativa Q circula pelo circuito puramente capacitivo e não sai desse circuito (ver Fig. 9.4b). Em certos momentos, a potência é positiva e em outros momentos é negativa. Isto significa que nos momentos de Q positiva, a energia elétrica entra no capacitor e é armazenada no campo elétrico do capacitor, e, nos momentos negativos, essa energia elétrica retorna ao circuito.





- a) Potência Q em um resistor
- b) Potência Q em um capacitor

Fig. 9.4

Problemas Propostos

- 9.1 Provar que a reatância capacitiva em um capacitor puro é 1/wC.
- **9.2** Provar que a reatância equivalente total de um conjunto série de reatâncias capacitivas é igual à soma das reatâncias capacitivas.
- **9.3** Provar que o inverso da reatância equivalente total de um conjunto paralelo de reatâncias capacitivas é igual a soma dos inversos das reatâncias capacitivas.
- **9.4** Provar que a impedância equivalente total de um conjunto série de impedâncias é igual à soma das impedâncias.
- **9.5** Provar que o inverso da impedância equivalente total de um conjunto paralelo de impedâncias é igual a soma dos inversos das impedâncias.
- **9.6** Seja f = 60Hz. Achar os equivalentes de indutância, reatância capacitiva e impedância na Figura 9.5a.
- **9.7** Repetir os cálculos de equivalentes de reatância capacitiva e impedância no problema 9.6 para f = 300 Hz e comparar os valores, observando o que aconteceu com o aumento de cinco vezes o valor da freqüência inicial.

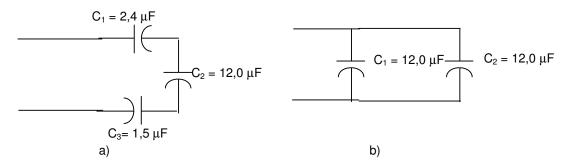


Figura 9.5 - circuitos dos Problemas 9.6, 9.7, 9.8 e 9.9

- **9.8** Seja f = 60Hz. Achar os equivalentes de indutância, reatância indutiva e impedância na Figura 9.5b.
- **9.9** Repetir os cálculos de equivalentes de reatância indutiva e impedância no problema 9.6 para f = 300 Hz e comparar os valores, observando o que aconteceu com o aumento de cinco vezes o valor da fregüência inicial.
- **9.10** Seja f = 60Hz. Achar os equivalentes de indutância, reatância indutiva e impedância na Figura 9.6.

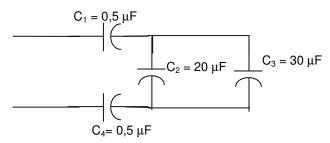


Figura 9.6 - circuito do Problema 9.10

- **9.11** Seja o circuito da Figura 9.7. Determinar para f = 60 Hz:
 - a a impedância equivalente total do circuito;
 - b a corrente que sai da fonte de tensão;

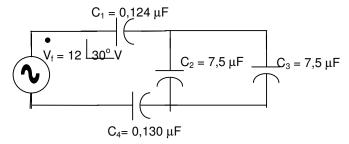


Figura 9.7 - circuito do Problema 9.11

- 9.12 Para o mesmo circuito da Figura 9.7, determinar para a mesma freqüência:
 - a a queda de tensão, a corrente e a potência reativa em C₂.
 - b– a potência total que sai e volta à fonte.

Respostas

9.6

9.7

9.8

9.9

9.10

9.11 9.12

REFERÊNCIAS.

- J. O´ Malley, Análise de Circuitos, 2a. edição, Schaum McGraw-Hill.
 R. A. Bartkowiak, Circuitos Elétricos, Makron Books do Brasil Editora Ltda, 1994.
 Resnick, Halliday e Krane, Física 3, 4ª. edição, 1996.
 B. L. Goodlet, Eletroctecnica Fundamental, José Montesó, 1961.